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FOREWORD

This is the final report for a three year research effort entitled
"Development and Implementation of Efficient Sparse Matrix Algorithms".
The scope of this effort has been very broad, covering the development of
efficient sparse matrix factorization and processing algorithms and the
development of local and global optimization algorithms. The topics form a

logical sequence in the sense that the results of each study are supportive
of the successor studies in a natural way for the treatment of large sparse
systems. Yet, they are autonomous efforts, each having a broad spectrum of
applicability in its own right.

The study on sparse matrix factorization and processing is reported in
"Sparse Symmetric Matrix Processing"” by P. S. Jensen and J. K. Reid,
Lockheed Research Laboratory Report LMSC-D626184 dated 26 May 1978. This
report is written as a volume of thFEE_?Zﬁzzzgﬁﬁgpers entitled:

"A Comparison of Two Sparse Matrix Processing Techniques,"
by P. S. Jensen,

"A Package of Subroutines for Solution of Very Large Sets
of Linear Finite-Element Equations", by J. K. Reid and

"A Fortran Virtual Storage Simulator for Non-Virtual Computers",
by P. S. Jensen,

The second paper, also available as Atomic Energy Authority report AERE-M 2947,
: documents the computer program developed as a result of this study. The

fy: utilization of auxilliary storage by this program is based on a virtual

| :memory concept that is documented in the third paper. These computer

programs have been distributed in the United States and England and requests

from Canada are being processed.
A preliminary report of the work on local and global optimization is pro-
vided in "Numerical Techniques for Optimization and Nonlinear Equations" by
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P. S. Jensen, E. R. Hansen and H. M. C. Yee, Lockheed Research Report
LMSC-D630055 dated 29 June 1978. It included a preliminary version of

“"Global Optimization Using Interval Analysis — The Multi-Dimensional Case"

by E. R. Hansen, which was subsequently accepted for publication in Numerische
Mathematik. That paper established the basis of the computer program
documented in "GLOBALMIN — A Computer Program for Global Optimization" by
E. R. Hansen, Lockheed Research Report LMSC-D683307, dated 15 November 1979.
This program hzs just been completed as of this writing and has not been
distributed.

The remaining work on local optimization is reported here. The main

text covers the technical development and test results. The computer program
CRATER, developed for the study, is documented in the appendix. CRATER is a
very flexible program implementing both descent and quasi-Newton algorithms
for unconstrained, local optimization. The present implementation is
oriented toward small problems having full Hessians. An effort to 1ink
CRATER to a sparse matrix processing system and a non-linear structural
analysis computer program (STAGS) for large scale engineering analysis is
planned for the near future.
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& ABSTRACT

?

i

L A new descent algeorithm based on direction searches in the osculating

L plane as opposed to the negative gradient is described. The major practical
difference bLetween the implementation of this approach and quasi-Newton
algorithms is the use of the Hessian in place of the inverse Hessian. Thus,
the descent algorithm is most suitable for problems for which it is practical
to recalculate the Hessian a number of times during the solution process. A

A number of comparative results with popular quasi-Newton algorithms are

: provided. Extensive discussion of the implementation details is included

along with documentation of a convenient computer program CRATER for

unconstrained optimization analysis.
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1. INTRODUCTION

Let f:R" = R be continuously differentiable and let g(x) and H(x) denote
the gradient and Hessian of f at x. We are interested in determining a
vector x* that minimizes f locally, i.e., such that g(g*) = 0. For this
discussion, we consider only unconstrained minimization.

The methods considered here are all linearization methods [13],

characterized by the use of an affine approximation

AT, T e e

g{x) = A (x - x,.) +glx,) (1)

of g, which is to be valid for x 1in a neighborhood of X,- The

practical application of this approximation is to use its zero

" -1 '3
Xee = X = A glx)) |

as an improved approximation to a zero of g.

We call the change

2k T Sl T %

or
]
S = My

w
1

g(fk) \2)

the kth step vector.

The most famous linearization method is Newton's method which uses
Ak = H(5k).
-construct. This fact has given rise to the widely studied guasi-Newton
methods, surveyed in [3 and 5] for example.
Another approach in determining Ak is motivated by considering x:R =+ R"
a continuous, differentiable function of a pseudo-time variable t defined by

For many problems, H is very difficuit or expensive to

(x), (3)




where x denotes the derivative with respect to t. If x(0) is in a region

g

of attraction of x*, then clearly x(t) - x* as t - «. For a small time
increment h, we may use a Taylor expansion

2 3

x(t + h) = x(t) + h&(t) + T (1) + 0(h’)

"
1

T

or, from (3),

x(t + h) Hg + 0(h3)

"
>
—
+
e
]
~ g
"o
+
n| >

to approximate x by neglecting the high order terms in h. Defining

s = x(t + h) - x(t) similar to (2), we obtain

ne

+ 8Hg, (4)

S a

(i{a}

h2/2. We shall refer to methods of this nature as
descent methods. In descent methods

where a = -h and 2

-1

Ax

= al +

mw

H(zk).

Steepest descents is the most well known descent method, for which & = 0.
An important practical difference between quasi-Newton and descent is

that quasi-Newton uses n

and descent uses H to approximate s. If the
problem being treated is such that H is difficult to calculate, the
noted difference is of minor consequence. The appropriate algorithms for
either model usually construct approxima*ions to H'1 or H using low rank
(1 or 2) updates and the two approximations are about equally difficult to
construct. If, however, it is reasonable to calculate H occasionally
during the solution process, (Z) presents a clear advantage since it does
not require a factorization of H. This advantage is particularly noticeable
if H 1is large and sparse. In fact, we note in (4) that an explicit

“representation of H is not required, i.e., only the product Hg is needed

for various g. Thus, we can conveniently introduce low rank updates to the

; current H with minimal impact on an algorithm based on (4) by applying the

updates directly to g rather than to H prior to forming Hg (i.e., retain

the updated H in product form).

N
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There have been studies, e.g., [11] and [16], applying quasi-Newton
algorithms to fairly large, sparse systems. 1In [16], the updates for the
I inverse Hessian were initially formed in the conventional manner and then
zeros were inserted to conform to the sparsity pattern of the problem. It
has apparently been shown to be superlinearly convergent [5 p 60]. In [1],

4] the updates are not directly applied to the approximate inverse Hessian but
gi are held and applied in product form. After every ten or so iterations, the
Hessian is reformed and refactored.
In this paper, we consider the application of a descent algorithm to
sparse problems under the assumption that it is reasonable to reform the
uf Hessian periodically. As indicated in the above discussion, we should not
b expect as rapid convergence as with quasi-Newton methods but, should expect
the average cost per iteration to be substantially less.
In the next section, we discuss the descent algorithm used. It is a
planar descent method in the sense that a direction in the [g, Hg] plane
b (see (4)) is chosen in place of the traditional steepest descent direction.
In Section 3 we discuss the matrix updating schemes used. This topic has
been extensively discussed in the literature and here we simply use the
two approaches that have enjoyed the greatest success ir the past.
Once the direction is determined, we use a line search to establish
the step length as discussed in Section 4. Thus, the function is not
truly minimized in the plane [g, Hg], but only along a direction in that
plane determined on the basis of (4). A study of complete planar minimization
at each step remains to be conducted.
In Section 5 we present some test results. Several "classical" problems
that have appeared in the literature are presented along with some new ones.
Our overriding objective for this effort was to implement an effective
algorithm for large, sparse problems for which it is reasonable to construct
_the Hessian occasionally during a solution process. Although the research
“was directed toward descent methods, we considered it imperative that no
commitment to descent methods should be reflected in the implementation.
Furthermore, because of many variations in updating, step direction and line
search that must be considered in such a study, we considered it important
to use a very flexible (modular) design in the implementation and include a

3=
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convenient problem oriented language in order to facilitate a systematic
study. The resulting computer program, called CRATER, is discussed in some
detail in Appendix. We feel that CRATER meets its design objectives very
well and should prove very useful for production development as well as

additional studies in local optimization.
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where we define

2
2. PLANAR SEARCH
Instead of defining coefficients o« and ¢ as in (4), we consider
d predicting o and £ to minimize f(x + s(a,8)). Using a Taylor expansion
4 about x we have
Fl+8) = Flx) + 57900 + BT,

3 which may be combined with (4) to yield :
: -
3 fix+s5) ~F= ag + Boy + %(azcl + 2ab:2 & 52':3), (5) §

¥

R e A
°; 2 gHg, 1=0,1,2,3.

The extrema occur at the zeros of the partial derivations of (5) wrt = and
£, which are formally given by

RGN oo e (6)
o bl 03
G40 -02
‘1°3 T 99
and 0002 e 012
gt o=
32

. 2 4 1 - 1 -
it 9403 # P Otherwise, we choose o' = —oo/c1 and g 0.

Because the approximation (5) is valid only for small s, we have no
guarantee that the step

s'=a'g+t et 7)

minimizes f(x + s) over o and £, or even that f(x + §') < f(x). The following
; theorem at least shows that s' is in a descent direction.
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Theorem If f:R" = R is twice continuously differentiable with non-negative
definite Hessian H, and at point x ¢ R" the gradient g(x) # Q, then the
step s defined by (7) is in a descent direction.

Proof

We must show that §‘T9 <0. Ifopeg- 022 then s' is parallel to the
negative gradient, which satisfies our theorem. Otherwise 9,93 -522 > 0 by

the Cauchy-Schwarz theorem and so from (7) we evidently need to show

3 2 (905" :22)(3'30 + 8'0y) < 0.

Now from (6) and the definition of cis WE have

o 2
g = -(‘O o3 - 2c051<:2 + o1 e
Defining
Y = COH9 - C]SS
we observe that
£ = -YTHY < 0. (8)

We have strict inequality in (8) because v 1is not in the null space of K.
If it were, then the denominators in the expressions for o' and &' in (6)
would be zero (as would the numerators). That follows immediately from the

facts that HY = 9 implies
GOGZ & 012

and
00 03 = 0102.

- -QED-

If we simply implement the planar search algorithm as outlined, and test
it on the standard Rosenbrock function




fo(x) = 100(x, - x,%)

£ (1 - xl)2 1

e o s

f} starting at gT = (-1.2, 1), we find the pleasing result that convergence is

achieved in only 5 steps. This compares with 30 steps for Powell's method
and 18 steps for the Fletcher-Powell method [6]. Note, however, that this
comparison is not completely fair since here we use the true Hessian. Also,
unfortunately, the convergence here progresses in the rather erratic fashion
shown in Figure 1. It would be somewhat more appealing if the function
decreased monotonically, or nearly so.

We can arbitrarily 1imit the factor by which the function value at any
. point exceeds the value at a previous point. For example, making the factor
# less than (or egqual to) unity forces monotonic convergence. In such a case,

a multiple ys' of the step given in (7) must be used, where 0 < v < 1. Note

’,, that a suitable y always exists since s' is a descent direction as snown in
[ the theorem. The value of y must be determined by a search ciong s'. This
matter is discussed in Section 4. We shall see later that imposing monotonic
convergence on our planar search alaorithm leads to & mildly slower conver-
gence rate for the Rosenbrock probliem.

If we apply the basic method to a quadratic form
fix} = x'b - % X Hx

we observe instant convergence for n = 2 (as expected) and monotonic con-
vergence for larger n. For example, if bi =n+1-1and Hii =3+ 1, we
obtain convergence in 5 steps for n = 3 and convergence in 15 steps for n = 10.
The Newton method, of course always gives instant convergence for this problem
anc quasi-iewton methods theoretically recuire no more than n stens.

¥
s
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Figure 1. Convergence of the Basic Planar Search Algorithm for the Standard
Rosenbrock Function Using the Analytic Hessian.
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; 3. MATRIX UPDATING

% Techniques for updating the approximate Hessian or inverse Hessian have
? been very widely studied for over 25 years. Dennis and Moré [5] provide a
# recent survey of much of the work in this area and Broyden [3] provides a

very readable earlier survey of general techniques for optimization and non-
Tinear equation systems. The work by Broyden was presented at the NSF-CBMS
Regional Conference on "The Numerical Solution of Nonlinear Algebraic Systems"
held at the University of Pittsburgh in 1972. A highlight of that meeting

was a series of lectures by Rheinboldt [13] that also provides excellent sur-

vey information as well as considerable theoretical background.

For this study, we used two popular update procedures, viz: DFP (Davidon-
Fletcher-Powell) and BFGS (Broyden-Fletcher-Goldfarb-Shanno). In order to
present these formulas and the form in which they were implemented, we intro-
duce some notation that appears to be widely accepted among articles on this
topic.

As discussed in Section 1, we are seeking a point g*aRn that minimizes
£:R" > R locally. We use an iterative procedure which, given a current point
gsRn, produces a step §eRn such that x + s is closer to x* than x in some
sense. We introduce the vector

y = 9(x +s) - g(x)

which represents the change in the gradient g of f resulting from step s.

Obviously, we would like |[g(x + s){| < [{g(x)|| or f(x +s) < f(x) or both.
Probably out of respect for the extensive works of Broyden in this area,

the letter B is usually used to represent the approximate Hessian and H is

‘used for something else (the inverse of B). Inthis paper, we shall also use i

B for the approximate Hessian, but H will denote the true Hessian (as in Sec. 1).
If B is the approximate Hessian at point x, we construct s, €.9., by

means of the planar search algorithm discussed in Section 2, and form the

$ updated Hessian using either of the two formulas

-9- ;
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or
Bypp =Btuz +zul (10
where
(y»$) derotes the inner product y's,
z = - s
v = Bs
and
u = B~y
with
AR l(1+ (Y,§))
] 2‘ (Y‘ ,§"j .

It is a simple algebraic exercise to show that (9) and (10) are formally
equivalent to the forms given on pp 72, 74 of Dennis and Moré [57.

The important features for our application are: 1. The updates preserve
symmetry (which is obvious) and 2. Bgroc § = Bppp § = y.  The latter feature
is basic to all useful update formulas.

For comparison, we also implemented quasi-Newton algorithms using the
BFGS and DFP counterpart formulas for the inverse of B. Letting B'1 be the
approximate inverse Hessian at x we have from [6].

o IS 1 | O 3
e T e
where
; w= 8y
From [ 6], we have
-1 _ p-1 1§
Bares = Bprp * (Yo¥) T (12)

where




4. LINE SEARCH

Two fundamental problems that must be addressed in iterative optimization
algorithms are selecting a step direction, as discussed in Section 2, and a
step length. Intuitively, a length that minimizes the function in the
direction of the step seems most appropriate. This choice of length is

called "perfect iteration" [3]. However, that length is fairly costly to
determine and, as we saw in the example of Section 2, is not always the best
choice.

A popular algorithm due to Davidon [4] uses a cubic interpolation of the
function and its partial derivative in the step direction corresponding to
lengths of 0 and 1. If we use length h instead of 1 and let fo’ fs’ f1,
fi denote the values of the function and its derivatives (along s) at points
0 and h on the step vector s, then cubic interpolation suggests that the

length & that minimizes f along s is given by

e .. n% = 3f6 Ny, - ﬂl)/312 (13)
where ) ! 2

ny = (3(F) = £,) - h(f, + 2f))/h
and ' \ 3

fig = ~(2(E, < £.) = BiEy w £ N,

If f(x + 2s) is less than f(x) and f(x + hs), then ¢ is the accepted length
without further searching. Otherwise the process is repeated with smaller h,
€.g., %h or & Since the algorithms usually used to generate the step s

take its length into account, an initial h =1 is suitable. However,

_Fletcher and Powell [6] suggest using conservative extrapolation

h = min(1,2(f-f*)/f")

if the value f* = f(x*) is known a-priori.




i
5
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If f(x) is such that it is practical computationally to use f(g}iz in
the place of f 1in the above algorithm, some benefit accrues from the fact
that the converged value is zero, viz: there is less cancellation in the
calculation of M and Mo and the f* is always known a-priori.

A quadratic Tine search is also frequently used. Since four values
fo’ fo', fl and fl' are available for the interpcolation, one can be discarded
or a least squares fit can be used. We have chosen a quadratic interpolation
of f' values that continues until a zero (within a prescribed tolerance) is
found: Note that this is cubic in f. The processes are started with fé, fi,
and f;, where fi comes from the Davidon cubic interpolation. The amount of

work done in the line search is controlled by the tolerance.

-12-




5.  NUMERICAL RESULTS

~

There have been a variety of comparative results published (see [1, 2,
7, 15] for examples) on the unconstrained optimization problem. Several
problems appear repeatedly in such studies and seem to have become defacto
standard test functions. Occasionally the author of such a study makes a
definite conclusion such as "The Fletcher algorithm was clearly superior to
all the others, followed by the Davidon-Fletcher-Powell "
e This author appreciates the value of the test results presented but cautions
against drawing a sweeping conclusion from them. The problems involved
k! relatively few unknowns (15, 10 and the rest less than 6) but certainly
represented a substantial complexity. Questions relating to sparsity and
the use of analytic Hessians (always or occasionally) were not considered.
; Unfortunately, the test results presented here are also inadeauate to
: draw any sweeping conclusions. They are only intended to provide a
minimal indication of the functioning of the algorithms discussed. A more
comprehensive study on the behavior of these algorithms for the optimization
of structural panels will be forthcoming. The problems treated here are

IR

described below.

5.1 PROBLEMS

N actoas e otk s

Problem 1. Rosenbrock [14]
A two dimensional problem that presents a considerable challenge for

numerical optimization is given
- 2 2 g 2
r (x) = c(x1 - x2) + (1 xl)

Q

_Qith a = 100 and starting at

Vg
i " (=l.2y 1)s

«]13-




In appearance, this function is like a deep canyon with a curved, gently
sloping bottom as illustrated in Figures 1 and 2 (using a o = 10). Rosenbrocks
function converges to zero at x*T = bl

pIN
A
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\
\
\
\

TR Wy e
//
b
/
/
%
_)'&:

AT
B 2%
XX

\0

P

[N 4

Figure 2. Rosenbrock Function

Problem 2. Wood [15]

A generalization of the Rosenbrock problem to four dimensions is given by

p f(x) = rlOO(xl’ x2) + rgo(x3, x4) +19.8 (x2 - 1)(x4 - 1)

+10.1 ((xy - 112+ (x, - 1Y)

4

-14-
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B i

where ra(g) is the Rosenbrock function and the starting point is

woods function converges to zero at 5*T

= e B 2o 1)
Problem 3. Powell [24]

A problem that has a singular Hessian at the point x* of convergence and
has an extremely gentle slope in one direction near x* is given by

Flx) = () + 106,02 + 5(xy = x)% + (x, - 20)% + 100, - x,)°
starting at
T
%o = (3, <1, 0, 10,

It converges to zero at the origin. Within a distance ¢ of the origin, .ne
slope is 0(e3) along Xy = -10x2, %5 5 4y

Problem 4. Rayleigh Quotient
A problem that does not appear to have been used much in the past for
studies of this sort is a Rayleigh quotient, such as that given by

T

f(x) = %n} Nx

wnere

and

N=dieg (1, 2, . . «» N}

The solution f(x*) = 1 occurs at g*T = (1, 0, ..., 0). The gradient and
Hessian of this function are given by

g(x) = nhx

-~

-15-




and
- T
l H(x) = n(F - gx - xg")
| where N is the shifted coefficient matrix given by

NzN- fl.
For application of the planar search minimization algorithm to this
problem, we are concerned with the nature of step vectors of the form (4).

Note that ?;

T T T '

f ,
' a

n{x Nx - fx'x)

LD S
wn
n

2f - 2f

0
so that

Hg = n(fg - g'gx).

Since these results imply that

g'Hg = ng'Ng = n’x'Tx
we see that the vectors g and Hg are linearly independent unless x is an
eigenvector, in which case g=0.

Combining (4) with the above, we obtain the expression

s = n(enN 2 4 oN - 39T91)§
- (Y2N2 N+ vy,
s Yo © n(8(nf? - QTQ) - of) = nf(32f - a) - anTTNZT
Y1 n(a - 28nf)
G Yp = n%s.

For arbitrary i and j (i # j) we may write x = g toxgey toxgeg, where e, i<
the ith column of the identity matrix. Note that this implies ii = ij = Q.

Note also that the ith and jth components of Nx are also zero. Letting

TRy R ¢

-16-
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we have

A a0
B oM (2 v 3w+ (D v d) xge
0

Thus, we can eliminate components i and j from the next iterate vector

1
X =X+8

by choosing o and & such that

A N
2t =g =y
0 0

Consequently, there exists a sequence of a's and 8's such that the problem
can be solved in no more than n/2 steps. Unfortunately, the current planar
search algorithm does not produce this sequence and somewhat more than n/2
steps are taken.

The three dimensional Rayleigh quotient may be graphically illustrated
by parameterizing it in terms of coordinates in a plane passing through the
tiree unit eigenvectors of N. The result in Figure 3, shows the three
stationery points at (0,0), (0,1) and (1,0).

«17=
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Quadratic form

i
~and H is diagonal with

The form of this was
b.

A very simple quadratic form test problem was also included in the test
The solution f(x*) =

Figure 3
Problem 5.
series.
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5.2 TEST RESULTS

Each of the 5 problems described was solved using each of the 3 methods
(planar search, DFP and BFGS), utilizing each of the 3 line search techniques
(cubic, extrapolated cubic and quadratic). For the planar search studies
each of the 3 Hessian updates (DFP, BFGS and analytic) were used, making a
total of 75 tests. The results of these tests are summarized in Tables 1
and 2.

Not all of the solutions converged within the maximum number of sters
allowed. These cases are noted by an * in Tables 1 and 2. The values of
the functions and their gradient norms at the end of the iteration are
given in Tables 3 and 4. Zero entries in these tables correspond to con-
verged results.
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Table 1

STATISTICS FOR COMPLETE PLANAR SEARCH SOLUTIONS

X ...... - - e -

1 1 HESSIAN 1 1 I FUNCTION] GRADIENT] HESSIAN

IPROBLEM 1 UPDATE I SEARCH I STEPS I EVALS. I EVALS. ! =-VECTOR

= L) (C Jo i o v e [errSerone oot I S e o I MULTS.

1 QUAD. 1 DFP E SCUBLS ] 26 1 46 1 46 | 78

1 I I EX=cl T 26 1 46 1 46 1 78

1 1 1 QuAD 3 2351 24 ] 24 1 €9

1 l=omrm—aee Im=—eemme [~===-em-- [memmmmeee [-==e—mm--- J-===- -——--
1 1 BFGS 1 CuBIZ 1 20 1 74 1 74 1 60

1 1 I EX=CU 1} 20 1 74 1 74 1 60

) I I QuAD I 23 1 24 1 24 ] 69

1 [ormss=sax le=mroscae Jesmmeanar Ji=ermcsanec jEssasmmr [rmemmm=
1 I ANALYTICI CuBIT 1 18 1 67 1 67 1} 36

1 I I ExX=CU I 18 1 67 1 67 1 36

1 1 1  QuAD 1 24 1 25, 1 25 1 48

| S D ] = —— D -t Iem——eaae T e A
I RAYL 1 DFP I CuBls 1 23 1 35 1 34 ] 69

1 I I EX=CU 1 153 1 164 1 164 1 45¢

1 1 I QuAD 1 12 1 13 I 68 1 36

1 J-c---mce= S =S Jemese—caa Jle===re [e==c=cs==
1 I BFGS 1 CuBIT 1 35n 1 46 1 45 1 105

I & I EX-CU I 153 1 164 1 163 1 asg

I 1 I QuAaD 1 11 .1 12 1 63 1 33

1 ) B b Isr==r=n== lceecrmeaa jr=emties=ie foe— e
1 I ANALYTICI CuBIZ 1 7 i 24 1 24 | 34

1 1 I EX=CU 1 17 1 20 1 20 1 34

1 1 1 QuaAD 1 42 1 43 1 167 1 84

o=t a ) e i e s i ) i o pi S ey e ) frba—oate s i e e
1 ROSN 1 OFP I CUBIE 1 42 1 51 1 ot | 126

1 1 I ExX=CU 1 42 1 53 I R 1286

1 1 1 QuAD 1 28 1 29 1 129 1 g4

1 joem e el Jueemsaa s j=cceemeaa e S e e S
1 1 BFGS [ ©CuBlZ 1 36 1 44 1 44 1 108

1 ) I EX=cU 1 39 1 51 1 51 1 117

1 1 I QUAD 1 33 I 34 1 138 1 Qg

I fe==Se=ecs Qe el e ) Gt T G Je i e | Cadhah ot it
1 I ANALYTICI CuBIZ 1 21 1 32 1 32 1 42

1 1 I EXscU I 21 1 321 32 1 42

1 1 I  QuAD I 14 1 9 1 87 1 28

foS==s o J-secnetas e e = e e —ae P T
1 wWOOD I» DFP L CUBLKS 3 303 1 304 ] 304 | 909

1 I= I Ex=cU" 303 1 304 1 304 | 908

1 I I QUAD 1 303 1 304 1 796 1 909

1 [-=-o==-- D el ) e [oe==san=
1 I« BFGS 1 CuBlL 1 303 1 308 1 308 1 90¢

1 I= 1 Ex-cu 1 303 1 308 1 308 1 Q03

1 I= 1 QUAD 1 303 1 304 1! 681 1 g09

1 Jeersmmnasi= —cwese=a ]-mem=me—ec]sacre=ca= Pessasmaas [===-- -—--
1 I»ANALYTICI CuBIT 1 303 1 307 1 306 1 606

1 1= I Ex=cY 1 303 1 3o 1 306 1 606

1 1 1 QUAD 1 243 1 244 1 502 486

) ortnetmin jron=as e i i e X e e a1 e
I POWELL I* DFP I CusiC 1 303 I 304 1 304 | 909

1 Is 1 EX-CU 1 303 1 304 1 304 1 9089

1 I» 1 QuAD 1 303 1 304 ] 426 1 9089

1 Jeeemsc=a Slesssnss s e |recacscas e e e ) g it
1 I=ANALYTICI CuBICZ 1 303 1 304 1 304 | 606

1 1= I ExX=CU 1 303 1 304 1 304 1 606

1 I I QUAD 1 303 1 304 1 379 1 606

1 [ewa=e A L} S = EETE S LRSS FESSEmane S bt ]
1 1= BFGS 1 CuBIC 1 303 1 304 1 304 1 909

1 1= I EX=Cu 1 303 1 304 1 304 1 9098

1 I I QuAD I 303 1 3049 1 383 1 Q0%

jesssssanlsusasnnce ) S o e - - ) e i § e s -
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Table 2 |
i
|
STATISTICS FOR COMPLETE QUASI-NEWTON SOLUTIONS 1
H
""""""""""" ]=meermcmcccr== DFP mevemmmcnccms [ memmmem e mme BF(GS me-mmmmmemee- ] |
1 1 1 FUNCT.! GRAD. IHESSIANI 1 FUNCT.IGRAD. IHESSIANI |
PROBLEM! SEARCH] STEPS 1 EVALS 1 EVALS.I-VECTOR] STEPS l.EVAL IEVALS I=NECTER] |
------- e et e i U I e e e e Sl SIVR IR
QUAD 1 cusic I TAT 22 1 22 I 22 | T 5 1 22 1 2 9
: I Ex-CU I 17 1 19 1 19 1 34 ] 16 1 23 1 23 1 32 1
1 1 GUAG. I 10 1 4 21 1 20 1 1 1 4501 22 1 50T
O I-=——--- I=~ommo- [------- Immmmmemlmeeoo-- Jm-mm--- Im=mm—e- Immmmm - Jmmmm-m- !
RAYL. I CuglC 1 21 23 3 23 1 a2 1 20 1 2201 22 | ag 1
1=EX=cw 1 4531 | 1Ba > 154 1 @06F 153 1 B4 1 154 1 30€ I
FIBURS. E L gSAN, L %52 i 183 1 3@t 79 1 80 1 6 1 . 158 1
ROSN. 1 CusiC 1 54 1 S 1 65 1 1081 39 1 B S ET oE, 7 3
. 1 Ex=cU I a6 1 57 1 57 I °2 1 a3 1 55 1 55 ] 82 !
. 1 QuaD. 1 28 1 291 . 1351 56 1 35 1 36 1 460 I 76 .1
A [------- Immoeem- e Immm - Immmm - J~------ I-=mmmuu Immmmm - Jmmmm—- 1
g w002 1=CUugIC I 303 1 322 1 322 1 606 1 £ 5 i 51 I 62 1
I=EX-cu/ I 3031 3541 852 1 €06 1 74 1 92 1 8oh'1T  4E 1
1 Quap. 1 gs 1 Borgh 356 1 176 1 78§ 74 T 300 1 146 1
: - . : . : :
R e Iro === lem————— [ e e faseicm= im0 et O e e i
POWELLI CL3IC I g4 1 01 fi0 1 .de8 1 3 1 51 1 511 766 :
I EX-CU T LMe6 T 16 tte b 2iohi 31 1 33 1 33 1 622 1
I euael I 74 1 751 181 48 i 2701 28 1 81 1 544 1!
------- O et BT B ettt ) IR (R
|
|
Table 3 |
L PUANE SEARCH =====m===romc-—mcooomeoooo oo 1 i1
1 1 !
[--mmmeoe- DFP —-------- 1----mm- BFGS =-------- I--- anaL --1 |
POWELL 303 I FUNCTION I GRADIENT I FUNCTION I GRADIENT 1 FUNCTION 1
CUBIC 1 8.20 E-08 1 4.01 E-05 1 3.02 E-06 1 4.40 E-04 1 1.53 E-05 1! _
EXCUBIC 1 B.20 E-08 1 4.01 E-05 ] 3.02 E-06 1 4.40 E-04 I 1.53 £-05 I
QUAD. 1 3.20 E-06 1 3.46 E-04 1 6.58 E-07 1 1.5¢ I 6.14 E 1 (4
------------ e G P !
wo0D 303 1 FUNCTION 1 GRADIENT I FUNCTION 1 GRADIENT |
cuBiC I 7.87 E 60 1 2.85 E=01 1 1.3y E<02 1 2.87 {
EXCUBIC I 7.87 E 00 I 2.85 E-O01 I 3.59 £ 00 1 3.82 ,
QUAD 1 6.60 E=02 1 1.09 £ 00 1 6.78 E-09 1 1.03 |
1 1 1

e et el Sl

= Table 4
e ~---= QUASI-NEWTON ======-==ccoae ——=--1 i
Dt DFF ===-e--=== N BFGS ===-=====]
wOOD - 303 1 FUNCTION 1 GRADIENT 1 FUNCTION 1 GRADIENT 1
B e B e Jmmmmmmmmmee l-=--m- ~——--1
CuBliC 1 4.08 E=03 1 2.21 E 00 1 0 1 0 1
ExcuBIC 1 2.75 g~-11 ] 1.15 E=-04 1 0 1 0 1
QUAD 1 0 1 0 1 0 1 0 1
B S ] T e S et e O L L e Jo-==-- —e—m--]
r - ———- - -
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6.  CONCLUSIONS

We have presented a new descent method that selects its search directions
from the osculating planes instead of the traditional gradients. We have
described and tested a variety of implementation considerations and made
extensive comparisons with two popular quasi-Newton algorithms. The major
difference in implementation between the descent and the Newton [or quasi-
Newton) algorithms is the use of a representation of a Hessian in the former
and its inverse in the latter. When the nature of a problem is such that it
is practical to work with the inverse Hessian, there appears to be little
doubt that a good Newton or guasi-Newton algorithm will outperform a descent
algorithm. When this is not the case; however, this new descent algorithm
provides a viable alternative.

For both types of algorithm, we find that the expenditure of a moderate
amount of effort in the 1ine search, such as through the use of our quadratic
search algorithm, has a very favorable effect on both convergence rate and
robustness. We recommend somewhat more effort in this respect than the
simple one or two step cubic interpolation that is frequently suggested.

Two studies relating to this work should be made in the future. The
first should investigate the possibility of doing a plane search for the
step length and direction simultaneously as opposed to obtaining the direction
from the plane and doing a Tine search for the length. The second should
test the behavior of the descent algorithm on large, sparse problems and com-
pare it with that of a good quasi-Newton algorithm.
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APPENDIX

CRATER — AN INTERACTIVE PROGRAM

FOR OPTIMIZATION STUDIES




1.  INTRODUCTION

CRATER is an interactive computer program designed for the convenient
solution of optimization problems using various algorithms. Convenience of
operation is achieved by means of a problem oriented language that provides
prompting whenever a user needs it but does not burden the experienced user
with unnecessary questions. Provision is also made for inspecting inter-
mediate results and changing various control parameters such as the print
control during an execution. The user can even stop a run and re-initialize
it at a different starting point if so desired. If a user should become
confused at some point in an execution, he can type HELP for assistance or
STOP to quit. One or several commands may be given on one line. Finally,
CRATER is forgiving. A user needs only to get the first four letters of each
command spelled correctly. If he fails at that, CRATER will politely ask
him to repeat.

Convenience of problem setup is achieved through program modularity.
Each routine used by CRATER is designed to serve a specific and rather
isolated prupose, and is well documented internally. Three specific routines
with which & user is particularly concerned are: USRFNL, USRGRD and USRHES,
which define the functional, gradient and (optionally) Hessian on which the
optimization procedure is to be applied. The starting point can be set at

zero or at a variety of random points using internal options or it can be keyed

or read in (free field).

For transportability, the code is essentially written in standard FORTRAN

66. We say "essentially" because, in fact, it is written in a special master

_source code (MSC) form that includes directives for special, machine dependent,

characteristics along with the FORTRAN code and resides in a library (called
EASY) developed at Lockheed Missiles and Space Co. [8]. EASY is maintained
by a reasonably sophisticated librarian program that, among other things, is
capable of interpreting the special MSC directives and producing source code

that is immediately operational on one of several specific computing environments.
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Another feature of MSC is that it includes a structured program
documentation system that imposes a significant amount of discipline upon
developers. The librarian checks the documentation supplied with MSC codes
and complains if it feels that the documentation is inadequate. It also
extracts and tabulates a copy of the documentation in order to facilitate
library searches and the construction of program documents such as this.
Thus, much of the documentation appearing in the subsequent Sections came
directly from the CRATER program itself.
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2. PROBLEM ORIENTED LANGUAGE

nTrC

The commands that a user imposes upon CRATER are organized in 2 simple
tree structure as illustrated in Figure 1.

C11 C12 C13 & N
c21 22 23 c24 25 v .
€l c3z €33 34 €35 RN

Figure 1. Command Tree I1lustration

At level 1, CRATER will 1ist the command options Cll, Cl2, . . . from which
the user should select one, C13 say. CR<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>